A Soft, Flexible Skin-Mounted Sensor for Monitoring Balance Deficits in People with Multiple Sclerosis

Ruopeng Sun¹, Yaejin Moon¹, Ryan S. McGinnis², Kirsten Seagers³, Robert W. Motl⁴, Nirav Sheth³, John A. Wright³, Roozbeh Ghaffari³, Jacob J.Sosnoff¹

1. Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign; 2. Department of Electrical and Biomedical Engineering, University of Vermont; 3. MC10, Inc.; 4. Department of Physical Therapy, University of Alabama at Birmingham

BACKGROUND

- Impaired balance affects 75% of MS patients during the progression of the disease[1].
- Degradation in balance increases the risk of falls[2].
- Clinical balance rating scales (i.e. Berg Balance Test) often lack precision and depend on clinician’s expertise.
- Force platform-based balance assessment is immobile and expensive.
- The BioStampRC® sensor is a soft, flexible wireless inertial sensor that can be attached to skin with minimal preparation.

Objective: Investigate the validity of BioStampRC® sensor to assess the balance performance of individuals with MS (and without a history of falling) and healthy control subjects.

METHODS

- Participants: 40 MS participants + 12 Healthy Controls

RESULTS

- The balance assessment consisted of two 30-second standing trials in three conditions:
 - Eyes Open/Firm Surface (EO)
 - Eyes Closed/Firm Surface (EC)
 - Eyes Open/Foam Surface (FEO)

 - Postural sway was measured with a BioStampRC® sensor placed on the lower back (L5), as well as by a force plate placed under the feet.

Measure abbreviations are presented in the Table below. *significant difference between HC and MS Recurrent Faller, + significant difference between HC and MS Non-Faller (p<0.017).

• CEA and TP sway metrics (derived from force plate and BioStampRC®) can differentiate MS Recurrent Faller from HC in all test conditions.
• Force plate based metrics (CEA,SP,MV,TP) and SP metric from BioStampRC® can additionally differentiate MS Non-Faller from HC in EC condition.
• Sway JERK, a unique metric for accelerometry measure, can differentiate MS Recurrent Faller from HC in EC/FEO conditions.

Moderate to strong correlation (rho >0.66) between BioStampRC® and force plate based sway metrics.

• BioStampRC® based sway metrics were as effective for differentiating individuals with poor balance as the force plate sway metrics.

ACKNOWLEDGEMENT

This research was supported by MC10, Inc., who had no influence on experimental design or manuscript preparation.

REFERENCES